Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
2.
Database (Oxford) ; 20212021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34697637

RESUMO

Biological ontologies are used to organize, curate and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies (OBO) Foundry was created to address this by facilitating the development, harmonization, application and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here, we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology's compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable, federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data Findable, Accessible, Interoperable, and Reusable (FAIR). Database URL http://obofoundry.org/.


Assuntos
Ontologias Biológicas , Bases de Dados Factuais , Metadados
4.
PLoS Negl Trop Dis ; 14(9): e0008655, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925904

RESUMO

Anthrax threatens human and animal health, and people's livelihoods in many rural communities in Africa and Asia. In these areas, anthrax surveillance is challenged by a lack of tools for on-site detection. Furthermore, cultural practices and infrastructure may affect sample availability and quality. Practical yet accurate diagnostic solutions are greatly needed to quantify anthrax impacts. We validated microscopic and molecular methods for the detection of Bacillus anthracis in field-collected blood smears and identified alternative samples suitable for anthrax confirmation in the absence of blood smears. We investigated livestock mortalities suspected to be caused by anthrax in northern Tanzania. Field-prepared blood smears (n = 152) were tested by microscopy using four staining techniques as well as polymerase chain reaction (PCR) followed by Bayesian latent class analysis. Median sensitivity (91%, CI 95% [84-96%]) and specificity (99%, CI 95% [96-100%]) of microscopy using azure B were comparable to those of the recommended standard, polychrome methylene blue, PMB (92%, CI 95% [84-97%] and 98%, CI 95% [95-100%], respectively), but azure B is more available and convenient. Other commonly-used stains performed poorly. Blood smears could be obtained for <50% of suspected anthrax cases due to local customs and conditions. However, PCR on DNA extracts from skin, which was almost always available, had high sensitivity and specificity (95%, CI 95% [90-98%] and 95%, CI 95% [87-99%], respectively), even after extended storage at ambient temperature. Azure B microscopy represents an accurate diagnostic test for animal anthrax that can be performed with basic laboratory infrastructure and in the field. When blood smears are unavailable, PCR using skin tissues provides a valuable alternative for confirmation. Our findings lead to a practical diagnostic approach for anthrax in low-resource settings that can support surveillance and control efforts for anthrax-endemic countries globally.


Assuntos
Doenças dos Animais/diagnóstico , Antraz/diagnóstico , Bacillus anthracis/isolamento & purificação , Testes Diagnósticos de Rotina/veterinária , Recursos em Saúde , Animais , Bacillus anthracis/genética , Teorema de Bayes , Testes Diagnósticos de Rotina/métodos , Gado , Microscopia , Reação em Cadeia da Polimerase/veterinária , Sensibilidade e Especificidade , Coloração e Rotulagem/veterinária , Tanzânia , Fluxo de Trabalho
5.
Nucleic Acids Res ; 48(D1): D704-D715, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31701156

RESUMO

In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics.


Assuntos
Biologia Computacional/métodos , Genótipo , Fenótipo , Algoritmos , Animais , Ontologias Biológicas , Bases de Dados Genéticas , Exoma , Estudos de Associação Genética , Variação Genética , Genômica , Humanos , Internet , Software , Pesquisa Translacional Biomédica , Interface Usuário-Computador
7.
Dermatol Surg ; 45(5): 640-649, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30829782

RESUMO

BACKGROUND: Recent increase in skin biopsies has been attributed to an epidemic of skin cancer. This may be avoidable, with potential savings. OBJECTIVE: To determine whether the increase in skin biopsies is attributable to increasing frequency of biopsies associated with histology lacking pathological cutaneous disease. Pathological cutaneous disease was defined as (1) a malignancy, precancerous lesion, or lesion of uncertain behavior; or (2) disease symptomatic or associated with adverse quality of life impact. PATIENTS AND METHODS: Retrospective cohort study, 2006 to 2013 of dermatology practice serving Florida and Ohio. Data were a consecutive sample of skin biopsies for diagnosis of dermatologic disease. RESULTS: A total of 267,706 biopsies by an average of 52 providers per month from January 06 to December 13 were analyzed. Number of biopsies per visit increased 2% per year (RR: 1.02, CI: 1.00-1.04). Likelihood of biopsy associated with histology indicative of nonpathological cutaneous disease did not increase over time (OR: 0.99, CI: 0.95-1.03, p = .6302). CONCLUSION: Rates of biopsies associated with nonpathological cutaneous disease is not increasing. Overall biopsy rates per visit have gradually increased; this seems attributable to greater rates of detection of pathological dermatologic disease.


Assuntos
Biópsia/estatística & dados numéricos , Padrões de Prática Médica/estatística & dados numéricos , Dermatopatias/diagnóstico , Feminino , Florida , Humanos , Masculino , Ohio , Estudos Retrospectivos
8.
PLoS Comput Biol ; 15(2): e1006790, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30726205

RESUMO

Genome annotation is the process of identifying the location and function of a genome's encoded features. Improving the biological accuracy of annotation is a complex and iterative process requiring researchers to review and incorporate multiple sources of information such as transcriptome alignments, predictive models based on sequence profiles, and comparisons to features found in related organisms. Because rapidly decreasing costs are enabling an ever-growing number of scientists to incorporate sequencing as a routine laboratory technique, there is widespread demand for tools that can assist in the deliberative analytical review of genomic information. To this end, we present Apollo, an open source software package that enables researchers to efficiently inspect and refine the precise structure and role of genomic features in a graphical browser-based platform. Some of Apollo's newer user interface features include support for real-time collaboration, allowing distributed users to simultaneously edit the same encoded features while also instantly seeing the updates made by other researchers on the same region in a manner similar to Google Docs. Its technical architecture enables Apollo to be integrated into multiple existing genomic analysis pipelines and heterogeneous laboratory workflow platforms. Finally, we consider the implications that Apollo and related applications may have on how the results of genome research are published and made accessible.


Assuntos
Biologia Computacional/métodos , Anotação de Sequência Molecular/métodos , Mapeamento Cromossômico/métodos , Sistemas de Gerenciamento de Base de Dados , Genoma/genética , Genômica , Armazenamento e Recuperação da Informação , Internet , Software , Interface Usuário-Computador
9.
Lab Anim (NY) ; 47(10): 277-289, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30224793

RESUMO

Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.


Assuntos
Animais de Laboratório , Bases de Dados como Assunto , Pesquisa Translacional Biomédica/métodos , Animais , Modelos Animais
10.
Bioinformatics ; 34(2): 323-329, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28968857

RESUMO

The Quest for Orthologs (QfO) is an open collaboration framework for experts in comparative phylogenomics and related research areas who have an interest in highly accurate orthology predictions and their applications. We here report highlights and discussion points from the QfO meeting 2015 held in Barcelona. Achievements in recent years have established a basis to support developments for improved orthology prediction and to explore new approaches. Central to the QfO effort is proper benchmarking of methods and services, as well as design of standardized datasets and standardized formats to allow sharing and comparison of results. Simultaneously, analysis pipelines have been improved, evaluated and adapted to handle large datasets. All this would not have occurred without the long-term collaboration of Consortium members. Meeting regularly to review and coordinate complementary activities from a broad spectrum of innovative researchers clearly benefits the community. Highlights of the meeting include addressing sources of and legitimacy of disagreements between orthology calls, the context dependency of orthology definitions, special challenges encountered when analyzing very anciently rooted orthologies, orthology in the light of whole-genome duplications, and the concept of orthologous versus paralogous relationships at different levels, including domain-level orthology. Furthermore, particular needs for different applications (e.g. plant genomics, ancient gene families and others) and the infrastructure for making orthology inferences available (e.g. interfaces with model organism databases) were discussed, with several ongoing efforts that are expected to be reported on during the upcoming 2017 QfO meeting.

11.
Cutis ; 100(4): 235-240, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29136057

RESUMO

Skin of color (SOC) populations (ie, blacks, Hispanics, Asians) are at a notably higher risk for mortality from skin cancers such as melanoma than white individuals. In this article, we seek to answer the following question: Do knowledge-based interventions increase skin cancer awareness among SOC patients? Following an extensive literature search, a total of 4 articles were analyzed and discussed in this review.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Melanoma/prevenção & controle , Educação de Pacientes como Assunto , Neoplasias Cutâneas/prevenção & controle , Etnicidade , Humanos , Melanoma/etnologia , Neoplasias Cutâneas/etnologia
12.
Philos Trans R Soc Lond B Biol Sci ; 372(1721)2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28396470

RESUMO

As part of the UK response to the 2013-2016 Ebola virus disease (EVD) epidemic in West Africa, Public Health England (PHE) were tasked with establishing three field Ebola virus (EBOV) diagnostic laboratories in Sierra Leone by the UK Department for International Development (DFID). These provided diagnostic support to the Ebola Treatment Centre (ETC) facilities located in Kerry Town, Makeni and Port Loko. The Novel and Dangerous Pathogens (NADP) Training group at PHE, Porton Down, designed and implemented a pre-deployment Ebola diagnostic laboratory training programme for UK volunteer scientists being deployed to the PHE EVD laboratories. Here, we describe the training, workflow and capabilities of these field laboratories for use in response to disease epidemics and in epidemiological surveillance. We discuss the training outcomes, the laboratory outputs, lessons learned and the legacy value of the support provided. We hope this information will assist in the recruitment and training of staff for future responses and in the design and implementation of rapid deployment diagnostic field laboratories for future outbreaks of high consequence pathogens.This article is part of the themed issue 'The 2013-2016 West African Ebola epidemic: data, decision-making and disease control'.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/prevenção & controle , Saúde Pública/educação , Inglaterra , Humanos , Laboratórios/organização & administração , Serra Leoa
13.
F1000Res ; 6: 1618, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30109017

RESUMO

Throughout history, the life sciences have been revolutionised by technological advances; in our era this is manifested by advances in instrumentation for data generation, and consequently researchers now routinely handle large amounts of heterogeneous data in digital formats. The simultaneous transitions towards biology as a data science and towards a 'life cycle' view of research data pose new challenges. Researchers face a bewildering landscape of data management requirements, recommendations and regulations, without necessarily being able to access data management training or possessing a clear understanding of practical approaches that can assist in data management in their particular research domain. Here we provide an overview of best practice data life cycle approaches for researchers in the life sciences/bioinformatics space with a particular focus on 'omics' datasets and computer-based data processing and analysis. We discuss the different stages of the data life cycle and provide practical suggestions for useful tools and resources to improve data management practices.

14.
Nucleic Acids Res ; 45(D1): D712-D722, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899636

RESUMO

The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.


Assuntos
Bases de Dados Genéticas , Estudos de Associação Genética/métodos , Genótipo , Fenótipo , Animais , Evolução Biológica , Biologia Computacional/métodos , Curadoria de Dados , Humanos , Ferramenta de Busca , Software , Especificidade da Espécie , Interface Usuário-Computador , Navegador
15.
Methods Mol Biol ; 1446: 291-302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27812951

RESUMO

The overarching goal of the Gene Ontology (GO) Consortium is to provide researchers in biology and biomedicine with all current functional information concerning genes and the cellular context under which these occur. When the GO was started in the 1990s surprisingly little attention had been given to how functional information about genes was to be uniformly captured, structured in a computable form, and made accessible to biologists. Because knowledge of gene, protein, ncRNA, and molecular complex roles is continuously accumulating and changing, the GO needed to be a dynamic resource, accurately tracking ongoing research results over time. Here I describe the progress that has been made over the years towards this goal, and the work that still remains to be done, to make of the Gene Ontology (GO) Consortium realize its goal of offering the most comprehensive and up-to-date resource for information on gene function.


Assuntos
Ontologia Genética , Genômica/métodos , Animais , Bases de Dados Genéticas , Humanos , Anotação de Sequência Molecular/métodos , Filogenia , Proteínas/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-28025345

RESUMO

We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This 'GO Phylogenetic Annotation' approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations.Database URL: http://amigo.geneontology.org/amigo.


Assuntos
Apoptose/genética , Autofagia/genética , Evolução Molecular , Ontologia Genética , Modelos Genéticos , Anotação de Sequência Molecular/métodos , Filogenia , Software , Animais , Humanos
17.
J Biomed Semantics ; 7(1): 57, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27664130

RESUMO

BACKGROUND: The Environment Ontology (ENVO; http://www.environmentontology.org/ ), first described in 2013, is a resource and research target for the semantically controlled description of environmental entities. The ontology's initial aim was the representation of the biomes, environmental features, and environmental materials pertinent to genomic and microbiome-related investigations. However, the need for environmental semantics is common to a multitude of fields, and ENVO's use has steadily grown since its initial description. We have thus expanded, enhanced, and generalised the ontology to support its increasingly diverse applications. METHODS: We have updated our development suite to promote expressivity, consistency, and speed: we now develop ENVO in the Web Ontology Language (OWL) and employ templating methods to accelerate class creation. We have also taken steps to better align ENVO with the Open Biological and Biomedical Ontologies (OBO) Foundry principles and interoperate with existing OBO ontologies. Further, we applied text-mining approaches to extract habitat information from the Encyclopedia of Life and automatically create experimental habitat classes within ENVO. RESULTS: Relative to its state in 2013, ENVO's content, scope, and implementation have been enhanced and much of its existing content revised for improved semantic representation. ENVO now offers representations of habitats, environmental processes, anthropogenic environments, and entities relevant to environmental health initiatives and the global Sustainable Development Agenda for 2030. Several branches of ENVO have been used to incubate and seed new ontologies in previously unrepresented domains such as food and agronomy. The current release version of the ontology, in OWL format, is available at http://purl.obolibrary.org/obo/envo.owl . CONCLUSIONS: ENVO has been shaped into an ontology which bridges multiple domains including biomedicine, natural and anthropogenic ecology, 'omics, and socioeconomic development. Through continued interactions with our users and partners, particularly those performing data archiving and sythesis, we anticipate that ENVO's growth will accelerate in 2017. As always, we invite further contributions and collaboration to advance the semantic representation of the environment, ranging from geographic features and environmental materials, across habitats and ecosystems, to everyday objects in household settings.

18.
Am J Hum Genet ; 99(3): 595-606, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569544

RESUMO

The interpretation of non-coding variants still constitutes a major challenge in the application of whole-genome sequencing in Mendelian disease, especially for single-nucleotide and other small non-coding variants. Here we present Genomiser, an analysis framework that is able not only to score the relevance of variation in the non-coding genome, but also to associate regulatory variants to specific Mendelian diseases. Genomiser scores variants through either existing methods such as CADD or a bespoke machine learning method and combines these with allele frequency, regulatory sequences, chromosomal topological domains, and phenotypic relevance to discover variants associated to specific Mendelian disorders. Overall, Genomiser is able to identify causal regulatory variants as the top candidate in 77% of simulated whole genomes, allowing effective detection and discovery of regulatory variants in Mendelian disease.


Assuntos
Algoritmos , Doenças Genéticas Inatas/genética , Genoma Humano/genética , Mutação/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Aprendizado de Máquina , Fases de Leitura Aberta/genética , Fenótipo , Mutação Puntual/genética
19.
Genetics ; 203(4): 1491-5, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27516611

RESUMO

The principles of genetics apply across the entire tree of life. At the cellular level we share biological mechanisms with species from which we diverged millions, even billions of years ago. We can exploit this common ancestry to learn about health and disease, by analyzing DNA and protein sequences, but also through the observable outcomes of genetic differences, i.e. phenotypes. To solve challenging disease problems we need to unify the heterogeneous data that relates genomics to disease traits. Without a big-picture view of phenotypic data, many questions in genetics are difficult or impossible to answer. The Monarch Initiative (https://monarchinitiative.org) provides tools for genotype-phenotype analysis, genomic diagnostics, and precision medicine across broad areas of disease.


Assuntos
Biologia Computacional , Estudos de Associação Genética , Genômica , Medicina de Precisão , Bases de Dados Genéticas , Humanos , Análise de Sequência de DNA , Análise de Sequência de Proteína
20.
Bioinformatics ; 32(22): 3501-3503, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412096

RESUMO

The MSAViewer is a quick and easy visualization and analysis JavaScript component for Multiple Sequence Alignment data of any size. Core features include interactive navigation through the alignment, application of popular color schemes, sorting, selecting and filtering. The MSAViewer is 'web ready': written entirely in JavaScript, compatible with modern web browsers and does not require any specialized software. The MSAViewer is part of the BioJS collection of components. AVAILABILITY AND IMPLEMENTATION: The MSAViewer is released as open source software under the Boost Software License 1.0. Documentation, source code and the viewer are available at http://msa.biojs.net/Supplementary information: Supplementary data are available at Bioinformatics online. CONTACT: msa@bio.sh.


Assuntos
Alinhamento de Sequência , Software , Linguagens de Programação , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA